化学混杂 CdS-PVK 纳米复合材料掺杂 DO3 体系的光折变效应

丁莉芸 钟韵鸣 黄兰芬 李大鹏 夏志林

(武汉理工大学光纤传感器技术国家工程实验室,湖北武汉 430070)

摘要 研究了含化学混杂 CdS-PVK 纳米复合材料聚合物体系的光折变效应,其中以 CdS 纳米粒子为光敏剂,聚乙烯咔唑(PVK)为载流子输运剂,4-(4-硝基苯偶氮)苯胺染料(DO3)为非线性生色团,9-乙基咔唑(ECZ)为增塑剂。 采用透射电子显微镜(TEM)对化学混杂 CdS-PVK 纳米复合材料的形貌和 CdS 尺寸进行表征。研究了 CdS-PVK 纳米复合材料的发光特性,实验结果表明,CdS 纳米粒子与 PVK 之间存在电荷转移。采用循环伏安法研究了 DO3 的氧化还原电势,结果表明 DO3 与 PVK 之间能级匹配。双光束耦合实验证明了 CdS-PVK:DO3:ECZ 体系的光折 变特性,在无外加电场下,获得的二波耦合增益系数为 34.5 cm⁻¹,衍射效率达到 3.4%。

关键词 光学材料;光折变效应;化学混杂 CdS-PVK 纳米复合材料;双光束耦合

中图分类号 O437 文献标识码 A doi: 10.3788/AOS201131.s100111

Photorefractive Effect of DO3-Doped Chemically Hybridized CdS-Poly (N-Vinylcarbazole) Nanocomposities

Ding Liyun Zhong Yunming Huang Lanfen Li Dapeng Xia Zhilin

(National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, Wuhan, Hubei 430070, China)

Abstract The photorefractive effect of the organic/inorganic polymer composite based on the chemically hybridized CdS-PVK nanocomposite doped with DO3 NOL chromophores and plasticizer 9-ethylcarbazole (ECZ) is reported. The CdS particles, acting as photosensitizers, show a nanoscale size in PVK adopting transmission electron microscopy. The photoluminescence (PL) spectra of CdS-PVK nanocomposite are studied. In order to approximate relative energy-level positions, the oxidation/reduction potentials of the chromophore DO3 are investigated by cyclic voltammetry. An asymmetric two-beam coupling confirms the photorefractivity of CdS-PVK : DO3 : ECZ gain of 35.4 cm^{-1} and a diffraction efficiency of 3.4% is obtained without the external field.

Key words optical materials; photorefractive effect; chemically hybridized PVK-CdS nanocomposite; two-beam coupling

OCIS codes 160.5320; 160.4236; 160.5470

1 引

言

光折变材料在高密度数据存储、实时全息术、干 涉测量、光放大、相位共轭和光学图像处理等方面具 有巨大的应用前景^[1~2]。光折变聚合物具有品质因 数高,掺杂和设计改性容易,加工性能优良,可方便 制备成薄膜、块体和波导等所需形态等优点,得到了 广泛的研究。 在有机光折变材料中,一般采用掺入光敏剂的 方法与电荷输运功能基团相互作用形成所谓的光敏 中心,以提高光生载流子的量子效率达到光电流增 感的目的。目前作为有机光折变材料的光敏中心多 由电子给、受体通过形成电荷转移复合物构成,然而 能够稳定存在并对光折变效应有贡献的光敏材料只 有几种,探索新型光敏材料的研究成为光折变材料

收稿日期: 2010-08-20; 收到修改稿日期: 2010-12-08

基金项目:国家自然科学基金(50802069)和中央高校基本科研业务费专项资金(2010-IV-050)资助课题。

作者简介:丁莉芸(1979—),女,副教授,主要从事光学敏感材料及光纤传感器等方面的研究。E-mail: dlyw@whut.com

及效应研究中的一个十分重要的内容。随着纳米晶 体制备技术的出现,人们意识到半导体纳米粒子在 聚合物体系中可以作为一种新型光敏剂,有机/无机 纳米复合材料的研究开发为新型光折变材料提供了 一个崭新的研究空间。颗粒尺寸小于 10 nm 的单 分散性的 CdS 粒子因具有明显的量子尺寸效应(被 称为 Q态 CdS 纳米粒子)成为研究的热点,将其作 光敏剂制备有机/无机纳米复合光折变聚合物有望 解决响应速度慢、外加电场降低的问题。已报道的 含 CdS 纳米粒子的有机/无机纳米复合光折变材料 的制备方法通常是纳米微粒直接分散法和纳米微粒 原位生产法^[3~6]。其中纳米微粒原位生成法可以有 效的避免纳米粒子的团聚现象,使得纳米粒子在聚 合物中分散均匀,解决了有机聚合物和无机纳米粒 子容易产生相分离的问题。

本文采用化学方法在 PVK 基体中键合 CdS 纳 米粒子制备 CdS-PVK 纳米复合材料,4-(4-硝基苯 偶氮)苯胺染料(DO3)为非线性生色团,9-乙基咔唑 (ECZ)为增塑剂制备有机-无机纳米复合光折变聚 合物。对化学混杂 CdS-PVK 纳米复合材料进行了 发光性能研究,运用双光束耦合(Two-beam Coupling)实验研究了 CdS-PVK:DO3:ECZ 体系的 光折变效应。

2 实 验

2.1 试剂

PVK(secondary standard)、4-(4-硝基苯偶氮) 苯胺染料(DO3)和 9-乙基咔唑(ECZ)购于 ACROS 公司,氯化镉、乙酸酐、浓硫酸、正庚烷、四氢呋喃 (THF)、高氯酸四丁基铵(*n*-Bu₄NClO₄)和乙腈为国 产试剂,所有试剂均未经进一步纯化。

化学混杂的 CdS-PVK 纳米复合材料参照文献 [7]在实验室合成。具体步骤包括:PVK 的磺化,离 子交换制备 PVK(SO₃)₂Cd 前驱体,原位复合法制 备 CdS-PVK 纳米复合材料。

2.2 CdS-PVK 光电导薄膜的制备

将一定质量 CdS-PVK 纳米复合材料溶解于四 氢呋喃(THF)中,溶液超声分散待充分溶解后,用 旋涂法将溶液在 ITO 玻璃上制成均匀的薄膜, 80 ℃蒸发 12 h 完全去除溶剂,得到 1~2 μm 的 CdS-PVK 薄膜。然后用真空蒸镀法在有机薄膜上 镀一层 Al 电极。

含不同 CdS 浓度的化学混杂 CdS-PVK 纳米复

合材料的光电导性能参考文献[6]报道。

2.3 光折变材料器件的制备

将设计的一定量的 CdS-PVK, DO3, ECZ 和 CdS 纳米粒子溶解于四氢呋喃(THF)中,蒸发去除溶剂, 并真空干燥收集样品。加热到 120 ℃使样品成熔融 态,用两片镀有 ITO 膜层的玻璃机械压制1 h,获得 CdS-PVK:DO3:ECZ 质量比(%)为 50:20:30 的透 明复合物薄膜样品。

2.4 测试仪器

用 HITACHI 公司 H-8100TEM 透射电镜观察 化学混杂 CdS-PVK 纳米复合材料的形貌、大小等, 用 HITACHI 公司的 F-4500 型荧光分光光度计测 试其发光性能,用 CHI650A 电化学工作站(上海辰 华仪器公司)进行分析与测定其光电导性能。光折 变体系 CdS-PVK:DO3:ECZ 薄膜用台阶仪(Taylor Hobson 公司,FTSS2-S4C-3D)测试膜厚。

DO3 的氧化/还原电势由循环伏安法(CV)测 试,由电化学工作站 Autolab PGSTAT30 (ECO Chemie B. V.)记录循环伏安曲线。DO3 溶解于乙 腈中配制浓度为1 mM,其中加入 0.1 M 的高氯酸 四丁基铵(n-Bu₄NClO₄)。使用玻碳作工作电极,Pt 为对电极,Ag/AgNO₃ 作为参比电极测试电势,扫 描速度为 100 mV/s,每次测量均以标准二茂铁离子 对(ferrocene/ferrocenium,Fc)校正。用已知电势 的二茂铁离子对(4.8 eV)作为内标,HOMO 和 LUMO 能级分别由氧化和还原电势计算得到。

3 实验结果与讨论

3.1 化学混杂 CdS-PVK 纳米复合材料的 TEM 分析

图 1 是不同 CdS 含量的 PVK-CdS 纳米复合材 料的电子显微镜(TEM)图。由图 1(a)可以看出,当 CdS 含量较小时,PVK-10-CdS 中的 CdS 为尺寸介 于 10 nm 左右的球状纳米粒子,均匀分布于基体材 料 PVK 中,二者相互交联,紧密结合;由图 1(b)可 以看出,当 CdS 含量较高时,PVK-30-CdS 中 CdS 粒子有了明显的团聚,粒子粒径介于 25~50 nm 之 间,粒子分布不均匀。采用化学原位复合的方法将 CdS 半导体纳米离子成功键合到聚合物基体 (PVK)中,但随着纳米粒子含量的增加,纳米粒子 的粒径逐渐变大,分散性能也有所下降并出现团聚, 这对光折变材料中 CdS 纳米离子含量的选择很有 指导意义。

图 1 不同 CdS 含量的 CdS-PVK 纳米复合材料的 TEM 图 Fig. 1 TEM image of chemically hybridized CdS-PVK nanocomposities

3.2 化学混杂 CdS-PVK 纳米复合材料的电荷迁移

为了研究 CdS 纳米粒子在 PVK 基体中所起的 作用,分别对物理复合 PVK/CdS 和化学复合 CdS-PVK 纳米复合材料进行了荧光光谱测试,如图 2 所 示^[3]。可以看出,在纳米复合材料中只观察到 PVK 中咔唑基的荧光发射,并没有出现 CdS 纳米粒子的 带隙发射峰,掺入 CdS 纳米粒子使得 PVK 的荧光 强度有所减小,这种荧光强度的减弱和 CdS 带隙发 射峰的消失是因为 PVK 和 CdS 间表面电荷迁移造 成的。

图 2 化学混杂 CdS-PVK 和物理掺杂 PVK/CdS 纳米复合材料的荧光光谱

Fig. 2 Photoluminescence spectra of chemically hybridized CdS-PVK physically droped and PVK/CdS nanocomposite

从图 2 还可以看出,随着 CdS 物质的量的增 加,化学复合 CdS-PVK 荧光强度逐渐减弱,而且荧 光猝灭程度较同浓度物理复合 PVK/CdS 的大。这 是因为物理掺杂体系中 CdS 纳米粒子加入表面修 饰剂对甲苯硫酚,对甲苯硫酚中的-SH 基团对 CdS 纳米粒子的表面结合能力远强于 PVK 中的咔唑 基,它会优先与体系中的纳米粒子表面结合,Cd²⁺ 与-SH 的结合一方面有效地修复了 CdS 纳米粒子 表面的陷阱,另一方面将 CdS 与 PVK 分离开,从而 大大减少了二者表面的电荷迁移。

3.3 DO3的循环伏安曲线

光折变效应的实现是聚合物体系中多种功能组 分密切配合、协同作用的结果,因此,考察各功能组 分的能级次序是设计合成光折变材料的首要步骤。 利用循环伏安方法可较为精确地测定有机小分子的 HOMO 与 LUMO 能级,因此循环伏安法可为实现 电极材料、发光材料和载流子传输材料之间的能带 匹配,优化光折变材料结构提供理论上的依据。

采用循环伏安法测试 DO3 氧化/还原电势,如 图 3 所示。由图 3 可以看出, DO3 的氧化和还原起 始电势分别是 0.28 V 和一0.93 eV,实验中,采用已 知电势的二茂铁离子对(4.8 eV)作为内标,DO3 的 HOMO 和 LUMO 能级分别表示为

$$E_{\text{HOMO}} = -(E_{\text{ox}}^{\text{onset}} + 4.8) \,\text{eV}, \qquad (1)$$
$$E_{\text{LUMO}} = -(E_{\text{re}}^{\text{onset}} + 4.8) \,\text{eV}. \qquad (2)$$

$$_{\rm MO} = -(E_{\rm re}^{\rm onset} + 4.8) \, {\rm eV}.$$
 (2)

图 3 DO3 的循环伏安曲线(溶剂:乙腈, 扫描速度: 100 mV/s)

Fig. 3 Cyclic voltammetry curves of DO3 measured in acetonitrile at a sweep rate of 100 mV/s

由(1),(2)式计算得到的 DO3 的 HOMO 和 LUMO 能级结果如表 1 所示。一般来说, HOMO 及 LUMO 的相对位置可以通过电离势或电子亲合 势的比较得到。但对于高分子体系,电离势或电子 亲合势的测量并不容易,所以依据各功能组分的氧 化电位来判断它们的 HOMO 能级的高低^[9]。PVK 的氧化电势是 0.77V (vs. Fc/Fc⁺)^[10],比 DO3 的 氧化电势高,因此,DO3 的 HOMO 较 PVK 的高,电 子可以从 DO3 向咔唑基团阳离子转移,两者的能级 相匹配,符合光折变聚合物各功能组分能级匹配 要求。

表 1 DO3 的能级计算结果

Table 1	HOMO	and	LUMO	energy	values	of	DO3
---------	------	-----	------	--------	--------	----	-----

Sample	$E_{\scriptscriptstyle 0}^{\scriptscriptstyle \mathrm{ox}}/\mathrm{V}$	$E_{\scriptscriptstyle 0}^{\scriptscriptstyle \mathrm{red}}/\mathrm{V}$	$E_{ m HOMO}/{ m eV}$	$E_{ m LUMO}/{ m eV}$
DO3	0.75	-0.95	-5.55	-3.85

3.4 CdS-PVK/DO3/ECZ 体系的光折变效应

目前,双光束耦合技术(TBC)被认为是确定材料 是否有光折变效应的直接判据。CdS-PVK/DO3/ ECZ体系薄膜厚度测试为 25.7 µm,其光折变性能由 TBC来研究。由氢离子激光器在 647.1 nm 处激发的 两束同偏振方向的相干光(光束 1 和 2)交汇于薄膜样 品的表面,两束光的光强分别是 187.3 mW 和 211.0 mW,在薄膜中干涉形成明暗相间的光强分布, 样品平面的法线方向相对于两束入射光的角平分线 倾斜 50°,两束入射光的夹角是 20°。

样品在二波耦合测量过程中,观察到相干相互 作用的两束光之间发生能量转移;将样品旋转 180°,两束光之间能量的转移发生反向,这是由于 DO3 偶极取向发生了反转的结果。在两束相干光 束照射样品后,用挡板挡住其中一束,发现被挡光束 的对应的光路上产生了另一光束的衍射光,表明由 于两束光相干形成的正弦光强空间调制分布,造成 了样品折射率的相应空间调制,而形成折射率光栅。 这些实验现象证明了该体系形成的光栅是由于光折 变效应引起的,当两束光之间的能量传递的效率达 到一定值后就出现饱和,记录数据如图 4 所示。

图 4 双光束耦合实验结果

Fig. 4 Asymmetric energy exchange in the two-beamcoupling experiment for the PR samples

二波耦合增益系数 Г为[11]

$$\Gamma = \frac{1}{L} \left[\ln(\gamma_0 \beta) - \ln(\beta + 1 - \gamma_0) \right], \quad (3)$$

式中 L 为光束在样品中的光程, β 为两相干光束在 经过样品前强度的比值, γ_0 为光束耦合率,定义为 $\gamma_0 = P_1/P_0$,其中一束光在有抽运光时强度为 P_1 , 在无抽运光时的光强为 P_0 。

二波耦合写入的体光栅的衍射效率为[12]

$$\eta = \frac{I_{1d}}{I_{10}} = \frac{I_{2d}}{I_{20}},\tag{4}$$

式中 I_{10} 和 I_{20} 分别为辐照刚开始(t=0)时写入光的透 射光强,当两束写入光光束的透射光强达到稳态时, 快速挡住其中一束写入光,在该光束的透射方向测得 的光强便是另一束光在体相位栅上的衍射光强分别 为 I_{2d} 和 I_{1d} 。在无外加电场下,计算得到非零二波耦 合增益系数 $\Gamma=35.4$ cm⁻¹和衍射效率 $\eta=3.4\%$ 。

4 结 论

化学混杂 CdS-PVK 纳米复合材料可以有效解 决相分离和纳米团聚等问题,CdS 与 PVK 之间发 生的电荷迁移有效地克服了激发电子的再复合,可 显著地提高 PVK 的光电导率。DO3 的 HOMO 较 PVK 的高,两者的能级相匹配。双光束耦合实验证 明了 CdS-PVK/DO3/ECZ 体系的光折变特性,在无 外加电场下,获得二波耦合增益达 35.4 cm⁻¹,衍射 效率 η达 3.4%,表明此类掺杂无机半导体纳米粒 子的光折变聚合物是一类具有极大应用前景的新型 光折变材料。

参考文献

- Li Minghua, Yang Chunhui, Xu Yuheng. Photorefractive Crystal Materials [M]. Beijing: Science Press, 2003. 9~10
 李铭华,杨春晖,徐玉恒.光折变晶体材料科学导论[M].北京: 科学出版社, 2003. 9~10
- 2 Liu Simin, Guo Ru, Ling Zhenfang. Photorefractive Nonlinear Optics [M]. Beijing: Standard Press of China, 1992. 104~134 刘思敏,郭 儒,凌振芳. 光折变非线性光学[M]. 北京:中国 标准出版社, 1992. 104~134
- 3 Ding Liyun, Jiang Desheng, Huang Jun. Photorefractivity of the polymer nanocomposites sensitized by CdS nanoparticles [J]. Acta Optica Sinica, 2006, 26(10): 1526~1531 丁莉芸,姜德生,黄 俊. 掺杂 CdS 纳米粒子聚合物的光折变效 应研究[J]. 光学学报, 2006, 26(10): 1526~1531
- 4 Ding Liyun, Jiang Desheng, Huang Jun. Photorefractive effect in a CdS nanoparticles-sensitized polymer composite [J]. J. Wuhan Uni. Technol. -Mater. Sci., 2007, **22**(4): 638~642
- 5 Ding Liyun, Jiang DeSheng, Huang Jun *et al.*. Photorefractive performance of a novel multifunctional inorganic-organic hybridized nanocomposite sensitized by CdS nanoparticles [J]. *J. Phys. Chem. C*, 2008, **112**(27): 10266~10272
- 6 Jiang Desheng, Ding Liyun, Huang Jun *et al.*. Synthesis and characterization of photorefractive polymer based on chemically hybridized CdSePVK nanocomposite with a new azo chromophore [J]. *Polymer*, 2007, **48**(24): 7156~7162
- 7 S. H. Wang, S. H. Yang, C. L. Yang et al.. Poly (N-

vinylcarbazole) (PVK) photoconductivity enhancement induced by doping with CdS nanocrystals through chemical hybridization [J]. J. Phys. Chem., 2000, 104(50): $11853 \sim 11858$

- 8 W. You, Q. Wang, L. Wang *et al.*. Synthesis and structure/ property correlation of fully functionalized photorefractive polymers [J]. *Macromolecules*, 2002, **35**(2): 4636~4645
- 9 G. J. Kavarnos, N. T. Turro. Photsenditization by reversible electron transfer: theories, experimental evidence, and examples [J]. Chem. Rev., 1986, 86(2): 401~449
- 10 A. Grunnet-J, D. Wright, B. Smith *et al.*. Spectroscopic determination of trap density in C₆₀-sensitized photorefractive polymers [J]. *Chem. Phys. Lett.*, 1998, **291**(5-6): 553~561
- 11 W. E. Moerner, S. M. Silence. Polymeric photorefractive materials [J]. Chem. Rev., 1994, 94(1): 127~155
- 12 S. M. Liu, R. Guo, J. J. Xu. Photorefractive Nonlinear Optics and Application [M]. Beijing: Science Press, 2004. 223~224 刘思敏, 郭 儒, 许京军. 光折变非线性光学及其应用[M]. 北 京:科学出版社, 2004. 223~224